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Gluino condensation in an interacting instanton ensemble
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We perform a semiclassical study of chiral symmetry breaking and of the spectrum of the Dirac operator in
QCD with adjoint fermions. For this purpose we calculate matrix elements of the adjoint Dirac operator
between instanton zero modes and study their symmetry properties. We present simulations of the instanton
ensemble for different numbers of Majorana fermions in the adjoint representation. These simulations provide
evidence that instantons lead to gluino condensation in supersymmetric gluodynamics.

PACS numbsds): 12.60.Jv, 11.15.Kc, 12.38.Lg

[. INTRODUCTION Here,b=3N. is the first coefficient of the beta function in
supersymmetric gluodynamics arMdpy is a Pauli-Vilars
In order to improve our understanding of non-perturbativeregulator.
phenomena in QCD it is useful to view QCD from a larger  There is an old puzzle concerning this result. The puzzle
perspective, as a member of a family of QCD-like theoriess connected with the fact that there is an alternative method
with different matter contents. In this context we would like for calculating the gluino condensate, usually referred to as
to understand the phase structure of QCD-like theories withne strong coupling instanton meth§@-12]; for a review
N; fermions in the _fundamental _re_presentation o_f the gaugdeee[13]. In the case oN.=2 one considers a four fermion
group andN,q fermions in the adjoint representation. Theo- cqrrelation function. This correlation function is a topologi-

ries with adjoint fermions are special because the action may,, quantity. Not only can it be saturated with one instanton,

display a symmetry that connects bosonic and fermu_)nlc deE)ut supersymmetry implies that the correlator is just a con-

&Rant. At short distance, one expects that this constant is satu-

powerful restrictions on the structure of the low energy ef'rated by small instantons and can be calculated reliably. The
fective action. These constraints have been used, for ex-

ample, to determine the phase structurNef 1 supersym- gluino condensate is then extracted by using clustering. The
metric,(SUSY) QCD with N, colors andN; flavors of puzzle is that the result differs from the WCI calculation by
C

fundamental quarkgL,2]. a factor 4/5. , _

In addition to that, supersymmetry provides the opportu- S€Veral suggestions have been put forward in order to
nity to isolate certain non-perturbative effects, in particular"®Selve the puzzIgl4—17. We do not wish to discuss these
instantons. This idea has been used in order to calculate tRossibilities in detail. Instead, we would like to employ a
gluino condensate in the simplest supersymmetric gaugeomewhat different, more qualitative approach. Even though
theory, SUSY gluodynamics. The strategy behind the sothere is no direct instanton contribution to the gluino conden-
called weak coupling instanton calculatif@+7] is to add to sate, one would still expect. configurations ywth instantons
the theory a fundamental fermion together with its scala@nd anti-instantons to contribute to the gluino condensate.
superpartners and consider the regime where the expectati§tfré We have in mind that the theory is studied in a finite
value of the scalar field is large. In this case there is a uniqu¥éolume and in the presence of a non-zero mass term. The
non-perturbative superpotential induced by instantons. Sincg'e€rmodynamic limit is approached by taking the volume to
the scalar vacuum expectation valvev) is large, instantons  infinity before we let the mass go to zero. The mechanism
are semi-classical and the superpotential can be calculatd@r gluino condensation is similar to the instanton liquid pic-
reliably. The superpotential determines the gluino condenture of quark condensation in ordinary QQm8—20. For
sate in the theory with additional matter. Finally, the matterNs>1 there is no direct instanton contribution to the quark

fields can be decoupled by sending their mass to infinity. Th€ondensate but chiral symmetry breaking may take place in
result for the gluino condensate BU(2) supersymmetric @n ensemble of instantons and anti-instantons in the thermo-

gluodynamics is dynamic limit. The Banks-Casher relat.iaﬁq>= —mp(0)
[21] connects the quark condensate with the density of ei-

genvalues of the Dirac operator at zero virtuality. For sim-

(AN)=6A3, (1) plicity let us consider an ensemble with an equal number of
instantons and anti-instantons. In this case the Dirac operator
no longer has any exact zero modes. However, if the inter-
action between the instantons is sufficiently weak, the ap-
proximate zero modes associated with individual instantons
2)1/3 p( 8772) and anti-instantons form a zone around zero virtuality and

whereA is the scale parameter defined[B]

ex 2) lead to spontaneous chiral symmetry breaking. This quark

A=Mpy
condensation mechanism has been investigated in some de-

bg? ~ bg?
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tail, both analytically and on the lattid®2,23, and the re- This discrete symmetry is spontaneously broken by gluino
sults seem to support the instanton picture. condensation. As discussed above, the value of the gluino

In the present work we wish to extend these studies ta@ondensate is known from a weak coupling instanton calcu-
theories with fermions in the adjoint representation. Since wéation. There are no predictions for the spectrum of the
are dealing with a strongly coupled theory, our calculationgheory, but we expect the lowest states to fill out a chiral
are necessarily approximate. In particular, we will have tosupermultiplet containing a scalar and a pseudoscalar meson
restrict ourselves to the contribution of small instantons foras well as a Majorana fermion. These results can be summa-
which the semi-classical description is appropriate. On theized in terms of an effective Lagrangig®6]. This is not an
other hand, the methods we are using are applicable also &ffective Lagrangian in the Wilsonian sense. The effective
non-supersymmetric theories with several flavors of adjoinfaction does not generate the low momentum scattering am-
fermions. In addition to that, we can use these methods tplitudes of the theory. Instead, it mainly serves as a generat-
study non-constant correlation functions that determine théng functional for the anomalous Ward identities of the
spectrum of the theory. theory.

The paper is organized as follows. In Sec. Il we discuss
some general aspects of chiral symmetry breaking in theorieg|. INSTANTON GAUGE POTENTIAL AND FERMIONIC
with fermions in the adjoint representation. In Sec. Il we ZERO MODES
describe the structure of the instanton zero mode wave func-
tions and in IV we calculate matrix elements of the Dirac [N theories with adjoint fermions it is convenient to em-
operator between zero mode states. These results are used?|RY & spinor notation for spin, vector, and color indi¢&%
order to determine the fermion determinant in the field of anVe can convert vectors to spinors using
instanton—anti-instanton paiSec. ) and to calculate the Vaa=Vu(0,) ai- (6)

gluino condensate in a random instanton ensertide. V).
"The Euclidean spinor conventions used in this paper are

In Sec. VII we describe simulations of an interacting instan
ton ensemble with different numbers of fermions in the fun- summarized in Appendix A. The instanton gauge potential
couples spin to color degrees of freedom. A fidl¥lin the

damental and adjoint representation.
adjoint representation o8U(2) can be represented by a
Il. QCD WITH ADJOINT FERMIONS symmetric tensoA 2B

QCD with adjoint fermions is defined by the Lagrangian

A2=ABe, (7). (7)

(3) In spinor notation, the instanton gauge potential in regular
gauge is given by

I\JIH

uv?

ID)abA(')b Ga Ga
4g°

where\}, is a Majorana fermion in the adjoint representation

of the gauge group an@},, is the usual field strength tensor. A ==2i (5aX + 5ﬁX5) > (€)

The covariant derivative in the adjoint representation is T

given by We can transform the gauge potential to singular gauge using
Dibz (7M5ab+ fabcAZ_ 4) the gauge transformation

For several Majorana flavors the theof$) possesses a U=x,(a,)*. ©)

SU(Naq) chiral symmetry. A non-zero gluino condensate Note that this matrix transforms an undotted color index into

<X(i))\(j)>: i (5) a dotted one. We can perform a “fake” conversion of the
MM dotted spinor back to an undotted one using the fact that

breaks this symmetry t8 O(N,4) [24]. This fact can be seen (o)““ is just the unit matrix.

most easily by considering the conserved vector and axial- In the case ofSU(2), the Dirac operator in the back-
vector currents[25]. There are3N.4(N,q—1) conserved ground field of an instanton has four zero modes. The first
vector currentsv” __(i) )\(j) and $N,4(N,q+1) classi- two are conventionally called the supersymmetss zero

cally conserved aX|aI vector currem&% f(')y ys\ ). The modes{13]

singlet axial currenA'l'L is anomalous. At the quantum level p?
this leavesN2,—1 conserved charges that generate the 7‘01(5) (575B 5V55)— 55
SU(N,q) chiral symmetry. Gluino condensation breaks the T (X*+p?)
axial symmetries and leads to the appearance; @2
N d—y2) Goldstone bosons. The unbrzpkéN 4N Zd(_ f‘)’ whereB=1,2 enumerates the zero modes. The other two are
a : a a
vector charges generate the resid0gN, ) symmetry. referred to as the superconforniat) zero modes
In the case of supersymmetric gluodynamidg, =1
there is no continuous symmetry. Instantons break the axial .
U(1)a symmetry but leave a discrel,_ symmetry intact. ()

(10

= (X2 + 8 y (1)

\/—77 2+P2)2
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In singular gauge, the zero modes are given by potentials of the individual instantons. For this purpose, the
gauge potential of the individual instantons has to be put in
i’ - singular gauge. In the sum ansatz, we can use the equations
)‘a(ﬁ) (x XB+XBX )_ W(SS)’ (12 of motion of the fermion fields in order to replace the cova-
P riant derivative in Eq(15) by an ordinary derivative

P 1 _
)‘Zfﬁ) (Xyé +X 5y)\/§77 (X2+p2)2(sc). (13 TIA:_f d*XNP(I NG . (16

Analogously, we can construct the zero modes of the Diradhe structure of the Dirac operator is dictated by the form of
operator in the background field of an anti-instanton. Thethe zero modes. In the background field of an instanton—anti-
regular gauge supersymmetric zero mode has the structuiiestanton pair we have

a(B) aoB, oa
)\'y'[s "’(5'}/554‘ 5555), etc.

SS=SS  TSS—sc
1A

The effect of the zero modes on the propagation of fermi- 0 1A
ons can be summarized in terms of an effective Lagrangian R B
[27]. The 't Hooft effective interaction in the case of one Tia= Tss-ss TSs-se . (17
Majorana fermion in the adjoint representation $8(2) 0

was determined ifi28,29. The result is Ta % Tay ¢

_ 47t 2m 4 2w p3d where the matrix elementS,], ... are real quaternions.
T3 ) TR TP These quaternions can be decomposed as
— T ° =T3 18
XA BN N N+ NEy Yah G @, N vs I N, Voe =Tl ouprs (18
1_ SC S%,B,B'_T (0' )BBI (19)
e AT maaﬁamﬁn]. (14)
2 M (TSS SC)BIB,:TSS*SCE’BB'

This result has to be interpreted with some care. The notion L sssc
of an effective interaction induced by instantons of some

fixed size is incompatible with supersymmetry. In order to soes sc_ss
derive manifestly supersymmetric results we always have to (Tai S)BB':T €pp’

integrate over the collective coordinates of the instanton. FTSC S )Y (21)
Nevertheless, it is instructive to compare the re&ld) with wv BEYR!

the effective interaction in the case f=2 Dirac fermions Here, -I—ss andTS¢ are real vectorsTsS™S¢ and TSCSS are real
in the fundamental representation. The structure of the twocalars andl'sg ¢ and T°¢ % are self-dual and anti-self-
interactions is quite similar, which suggests that instantong wy

may lead to similar physical effects. The most important dif- dual tensors, respectlvely Chiral symmetry implies that the

ference between the two effective Lagrangians is the preﬁd""‘gon""I blocks off are zero. The upper right and lower
ence of derivatives acting on two of the four Majorana eft blocks are related by Hermitian conjugation. For ex-

spinors in (14). This difference is connected with the ample, we find that
asymptotic behavior of the supersymmetric zero modes,
which is not~1/z3, but 1£*.

€@, (20

(T3 59) g =TS0 B8, (22)

In general, we haveT(),,=(T),a. The eigenvalues dfl7)
come in quartets§,&,— &,— £). These results are in agree-
In the following, we wish to study the spectrum of the ment with the general arguments presentefP 30.

Dirac operator in an instanton ensemble. For this purpose, The functionsT;?, ... depend on the collective coordi-

we have to calculate matrix elements of the Dirac operatonates of the instanton and anti-instanton. We will character-

between the zero modes of individual instantons and antiize the relative color orientation by the four vectar,

instantons =1/2. tr(UAU,aﬂ) Here, U, o are SU(N;) matrices that
characterize the color orientation of the instanton and anti-

TIA:f d4xy?(im)ab)\2. (15) ins'tanton. I_:or coloSU(2) u, is a real vector_ withu?= .

Usmg rotational symmetry and the fact thig, is quadratic

IV. MATRIX ELEMENTS OF THE DIRAC OPERATOR

inu, we have
An ensemble of instantons and anti-instantons is only an

approximate saddle point of the action. If the system is suf- ss_7 ss oNTSSL S \27ss
ficiently dilute then the instantons and anti-instantons are T=2, T UL (U2 To+ 2,(u-2)7T3, (23
well separated and the approximate saddle point solution for s~ —sc ~ s~ A prsc
the gauge potential is given by a simple sum of the gauge T, =2z,Ti+u,(u-2)T3+z,(u-2)°T3", (24)
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TSs—sc_TsSsscy TSS_SC(U-E)Z, (25) 1 . K3 .
' ? Tis(z)Zﬁf dk 2k411(k2)—16?12(k2) | pa(K)|%,
T8 %°=(u,z,~u,z,)(u-2) T3>, (26) 33
where z,=2,~2, and the functionsT$®, ... depend on 3

(1], p1.pa). For simplicity, we will assume that the depen-  T5%z)= in' dk[ 8k*j 1(kz)—32k7j2(kz)]|¢2(k)|2,
dence onp, o only enters through their geometric mean 8 (34)
=/p,pa- The fact that this assumption is valid to fairly good
accuracy was checked in the case of fundamental fermions. 1
In a more sophisticated treatment of the instanton—anti- TS(2)= _f dk16k*j3(kz)|pa(K)|?, (35)
instanton gauge configuration the dependence of the overlap 872

matrix element on4,p,,p,) is restricted by conformal in- . . . _
variance[31]. wherej,(x) is the spherical Bessel function of orderThe

In the following we shall outline the calculation of the iNtégrals(33) have to be performed numerically. The results
invariant functionsT3®, . ... We describe the cas&3® in arer ?L]O'Y;/irz] 'Q Elg.f]i'hmr:hfnfcr)inovlwrng, \II¥e ‘?Q"tﬁse a S'm?lteh
some detail but relegate the results for the other functions tgarametriza to' 0 Ie umerical resuts. € case of the
appendix B. Using the expressi¢h?) for the wave function Supersymmetric overlaps, we use
of the supersymmetric zero modes in singular gauge we find

_ ~-1.2&
- — TiX2)= — — —, (36)
T5={tr(o 0,050 )0, 0,0,0,) P 1.0+2.34°+0.35*+0.24°
+ tr(;,u.o-p;ﬁa-ngvo-o';'yo-a)} : upuo — 10&_ - 63@
SS, —
pT2(2)= =3t ~2\4"
4 (1.0+0.3&°)° (1.0+0.6&°)
X | A, (X=2) 30 p(X), (27) (37)
where ¢,,,(x) is the profile function of the supersymmetric — 15.8°
zero mode pT3(2)= (1.0+08%0)"" (38)
2 3 _
b ,,(X)= P L. (28)  Wherez=2z/p. These parametrizations respect the asymptotic
a T (x2+ p?)? behavior of the overlap integrals. In particular, we have

_ _ _ _ _  TSY(2)~1/2°, T5%(2)~1/2% and TS5 5Y(2) ~ 1/z*.
The integral in Eq(27) is most easily calculated in Fourier  For completeness, let us compare these results to the cor-

space. The Fourier transform gf,, is given by responding expressions in the case of fundamental fermions.
. In this case, there is only one zero mode per instanton. The
b u(K) = 6,,1(K) + K, K, da(K) (29 overlap matrix elemenT,, is a real number in the case of
with SU(2), andcomplex forSU(N.>2). T, satisfies the sym-

metry relationT;,=Tj,. As a consequence, the eigenvalues

27p? 4 2 are real and occur in pairsg(—¢). We can extract the de-
b1(k)= y [__ ;7+1 Kq(y)— yKo(y)}, (30)  bendence off |, on the collective coordinates. The result is
TfAL;ndz(u'i)Tf(val va)v
,/16 [16 4 8
$a(K)=—2mp) — —| 5+ - [Ka(y) = | 5 +1|Ko(y) . . 1 4z
yuoly Y y T'(z.p1.p2)= ; ;- (39

andy=kp. K,(y) is the modified Bessel function of the first We note that the fundamental overlap matrix element only
kind and ordem. We can now calculate the overlap integral depends on oneSU(2) angle co®$=(u-2). From the
and perform the traces. In momentum space the result igsymptotic form of the zero mode solution one firidl$z)

given by ~1/2°.
T3 (k)= (—1)[— 2k, —8u,(u-k)+16(u-k)?][$o(k)|?. V. THE FERMION DETERMINANT IN THE FIELD OF AN
(32) INSTANTON —ANTI-INSTANTON PAIR
Finally, we can determine the functiofi§? 5 by performing Before we study gluino condensation we would like to

the inverse Fourier transform. In tliék integral all integra- make a brief digression and discuss the gluino induced
tions except for the one over the absolute magnitudeaain  instanton—anti-instanton interaction. This interaction will
be performed analytically. We find play an important role in the calculation of the gluino con-
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stanton and anti-instanton are well separated it has the dipole

1.25 ss
. ;s; form [32]
1.00 . ‘|'3'5a g
4pipi
075 : S=25-5S i (1-4cog9), (40)
0.50 _
= whereS,=(87?)/g? is the single instanton action and abs
0.25 ] is theSU(2) angle introduced above. We note that the inter-
3 - action is attractive if the color orientation is aligned with the
000 £\ P spatial orientation, co8=*1. The second factor is the fer-
o P mion determinant. In the case of fundamental fermions, it is
-025 1\ / ] also well known. We have
N\ )
-0.50 ‘ ‘ ‘ 16 z
00 20 4.0 60 det(D)=cog9 , 41
@ % e pipa [2.0+2% (pipa)T* b
0.60 T
) Y which is also attractive for cas=+1. We also note that the
T, interaction peaks at’=p,p, .
045 | | 1 Using the results of the last section we can calculate the
K fermion induced interaction with fermions in the adjoint rep-
resentation. In order to calculate the determinant for one Ma-
030 \ 1 jorana fermion we take the square root of the corresponding
= expression for a Dirac fermion in the adjoint representation.
045 Lt | For simplicity, let us begin with the determinant in the basis
; of the supersymmetric zero modes only. We find
0.00 de(D)SS=|(T5%)2+[(T59)2+ 2T3T5%+ 2T35°T5% codh
\ — + (T2 +2T5TScod o] 42
%4 20 4.0 6.0 The result for the superconformal zero modes is even more
(b) 2p simple,
0.50 T
= det(D)S°=[(T39)2+[(T392+2T3°T5 cosd|. (43
N '|'55‘5‘:2
/ This expression is quite similar to the determinant for funda-
! mental fermions. The supersymmetric determinddp)
025 - } ] is somewhat more complicated, but also peaked forfeos
N +1. When the mixing between supersymmetric and super-
= ; conformal zero modes is included the fermion determinant
< depends on otheBU(2) angles in addition to cas We
0.00 el show numerical results for lddet(D)) as a function ofz,
T cosé, and cosp in Fig. 2. Here we have takez),=z3,,, and
/ defined co¥=u, and sindcos¢=u,. We observe that again
e the determinant peaks fa?=p,p,. For largez, the deter-
minant behaves as 1/z'°. More importantly, we find that
—0.25,5 20 a0 60 the interaction is again most attractive for @s+1. There
(©) 2p is some dependence on epsbut it is not as pronounced as

FIG. 1. Invariant functions characterizing the overlap matrix the dependence on césThis means that the gluino induced
elements of the Dirac operatda), (b), and(c) show the diagonal

interaction for one Majorana fermion is qualitatively similar

overlap matrix elements between supersymmetric and superconfote the quark induced interaction with an effective number of
mal zero modes, and the mixed supersymmetric-superconformajuark flavors betweel;=2 (which gives det 1/z'?) and

matrix elements.

densate in an interacting instanton ensemble.

The probability to find an instanton—anti-instanton pair

N;=23 (corresponding to det1/z%%).

VI. GLUINO CONDENSATION IN A RANDOM
INSTANTON ENSEMBLE

characterized by the collective coordinates {,p; a,U; a)
is controlled by the weight factor exp@det(® +m). The In this section we study gluino condensation in a random
first factor is the well known gluonic interaction. If the in- instanton ensemble. This means that we will assume that the
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and it certainly cannot be correct in a supersymmetric theory.
Nevertheless, using the approximation of randomness we can
get some analytic understanding of the dependence of the
gluino condensate on the parameters characterizing the in-
stanton liquid. We can also get an estimate of the relative
size of the quark and gluino condensates in theories with
both fundamental and adjoint fermions.

The simplest model of the spectrum of the Dirac operator
is based on the assumption that the non-zero matrix elements
of the Dirac operator are Gaussian random numlh&es.

The distribution is characterized by the first moment

o= < %tr(TTT) > : (44)

The eigenvalue distribution for the Gaussian ensemble is
given by a semi-circle where the density of eigenvalues at
zero virtuality isp(0)=(N/V)(mwo) L. Here, \N/V) is the
number of eigenstates per unit volume. The first moment of
the overlap matrix can be estimated by averadifg|? over

the collective coordinates of the instantons. Usi{B8) we

find the first moment of the Dirac operator for fermions in
the fundamental representation ®8(2) [19]

1N 1/2_
o=

p, (45

3V

where;is the average size of the instanton. This parameter,
just like the density of instantons, cannot be determined in
the semi-classical approximation. In the instanton liquid

model of the QCD vacuum it is assumed tHai 1/3 fm and
(N/V)=1 fm*[18]. Using these values we find

o 1 N 1/2
<qq>=—:31/2(v) ~—(230 MeV)®,  (46)
TP

in very good agreement with the phenomenological value
[which, of course, applies to col&U(3)].

The same arguments can be applied to gluino condensa-
tion in a random instanton ensemble. In this case we need to
determine the first moment of a quaternionic matrix with the
matrix elements determined in Sec. IV. We find

N 1/2 o
Ca v) 043, @7

which is somewhat smaller than E¢5). There are four
times as many eigenstates per unit volume but for a Majo-
rana fermion the Banks-Casher relation has an additional fac-

tor 1/2,(?)\>= —a/2- p(0). Wefinally get the following es-

tion of z (in units of p) for cosé=1, (b) gives the dependence on timate of the gluino condensate:

cosdfor z=1, and(c) the behavior of the determinant as a function

of cos¢ for cosf=1/2 andz=1.

o 1 N 1/2
mp

collective coordinates of the instantons and anti-instanton are

distributed randomly. In particular, we shall neglect the ef-Here and in what follows we have dropped the subsdvipt
fect of the fermion determinant on the distribution of instan-on the Majorana spinors. This result is a little more than
tons. This is not a good approximation even in ordinary QCDtwice as large as the corresponding result for a Dirac fermion
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in the fundamental representation. As we saw, this is mainly fundamental fermions
due to the effective number of zero modes in both cases. We
emphasize that the gluino condensate is proportional to the 4000.0
square root of the instanton density, which is also what one
would expect if the condensate is extracted from the four-
point function using clustering. 20000 |
We have checked these estimates by performing a nu-
merical calculation of the spectrum of the Dirac operator in a
random instanton ensemble. This means that instead of as
suming the matrix elements of the Dirac operator to be ran-
dom we take the collective coordinates of the instantons and
anti-instantons to be random. We calculate the spectrum of
the Dirac operator and determine the gluino condensate us 1000.0

ing

NG

2000.0

(49 00

— 1
<)\)\)=—§f dxp(N) 0.0

2. 02"
A+m A A
The results are shown in Fig. 3. We observe that the spec-
trum is not a semi-circle but is peaked towards zero virtuality
[33]. This non-analyticity is smoothed out when we calculate

the condensate for a non-zero quark or gluino mass. Again
using \N/V)=1 fm* and p=1/3 fm as well asmg=mq

=20 MeV we find (4)=—(260 MeV)y’ and (M) 20000.0
=—(347 MeV)y.

VII. GLUINO CONDENSATION IN AN UNQUENCHED
INSTANTON ENSEMBLE

N()»)’

10000.0
As we stressed in the previous section, the assumption of

randomness is not expected to be very useful. The fermion
determinant is given by the product of all eigenvalues of the
Dirac operator, while the quark or gluino condensate is de-
termined by the density of small eigenvalues. This implies

that the determinant tends to suppress fermion condensate: %%% ]

In particular, we expect that the strength of chiral symmetry A[A]

breaking is reduced as the number of fermion flavors is in- o

creased. FIG. 3. Spectrum of the fundamental and adjoint Dirac operator

_in a random instanton ensemble. The spectral density is given in

In this section we shall study this problem using simula-"" © .
|arbltrary units.

tions of the instanton ensemble in QCD with fundamenta

and adjoint fermions. We consider the partition function o ) )
in the gluonic instanton interaction; see Sec. V ¢44d] for

N a more detailed discussion. The repulsive core eliminates the

sz (H ind(pi))de(Df+mq)Nf contributions of large instantons and very close pairs. This
! particular method for suppressing objects that are not semi-

X de( D, +mg)Nad/2exr(—S). (50) Classical has the virtue that it respects the classical scale

invariance of Yang-Mills theory.

Here, Q) denotes the collective coordinates of the instanton, The instanton ensemble is characterized by two numbers,
d(p) is the single instanton distributidi27,29,34, D; , are the scale parameteX that enters into the instanton weight
the Dirac operators in the fundamental and adjoint represerfi(p) and a dimensionless paramefewhich determines the
tation, and exptS) is the gluonic interaction between in- Size of the core. Lacking a better theory of topological fluc-
stantons. In order to study spontaneous symmetry breakingations beyond the semi-classical domain we have téfix
in a finite volume we introduce non-zero quark and gluinophenomenologically. This could be done, for example, as
massesn, ;. We will study the limitm, ,—0 in some de- S00On as lattice information on the spectrum and other prop-
tail. erties of theories with adjoint fermions becomes available

The partition function(50) suffers from the usual IR prob- [35,36. In this work we will use the same value that was
lem connected with large instantons for which the semi-employed in studies of QCD with fundamental fermions. It
classical approximation does not apply. In practice, we dedeads to a dilute instanton ensemble characterized by the di-
with this problem by introducing a short range repulsive coremensionless parameter*(N/V)=0.12. For simplicity we
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a N broken. There is no clear evidence for chiral symmetry
25 ¢ oON=2 - breaking in simulations with four or more flavors.

®N=3 Figure 4b) shows the gluino condensate measured in
simulations with one or two flavors of Majorana fermions in

. the adjoint representation. FN, =1 there is clear evidence
for spontaneous symmetry breaking. Indeed, the behavior is

15 - ] more reminiscent of the cade;=1, where{qq) receives
direct instanton contributions, than the c&$e=2, in which
o °® chiral symmetry breaking is a collective effect.
1.0 | ] These observations can be understood in more physical
° terms. Supersymmetric gluodynamics has no Goldstone
05 | ° ¢ e bosons, so finite volume effects are much weaker than in
: * N;=2 non-supersymmetric QCD. This means that in a fixed
L ¢ * ¢ volume, gluino condensation can be observed for gluino
0.0 ¢ 2 A A A 4 ‘ masses that are significantly smaller than the quark masses
0.00 0.10 020 required to produce quark condensation. In the standard pic-
m, [A] ture, there is a discrete chiral symmetry which is broken by
; gluino condensation. This means that if the gluino mass is
=12 too small then chiral symmetry will be restored because of
tunneling between th&, vacua. This is different froniN;
=1 non-supersymmetric QCD where instantons leave no un-
m broken discrete symmetries.

e w ® =@ The value of the gluino condensate(is\)=2A3. This

20 r ) result has the correct order of magnitude but it cannot yet be
compared directly to the predictidi). First of all, we use a
different definition of the scale parameter. In order to make a
connection with our work on QCD we use a Pauli-Vilars
10 - scale parameter. Second, we have an additional parameter
which controls the boundary of the semi-classical regime.
Finally, we have performed the simulations at a fixed density

<qg> [A]
[ ]
[ ]

aN

ad™

<qg> [A]

® o of instantons K/V)=1.0A%. It is this choice which effec-
e ©® © o o o© ‘ tively sets the scale in our calculation.
0'%_00 0.10 0.20 In Fig. 4(b) we also show the gluino condensate measured
m, [A] in simulations withN,q=2 Majorana flavors. The conden-

sate is very small and there is no clear evidence for sponta-
FIG. 4. Quark condensate in an interacting instanton ensemblgeous chiral symmetry breaking.

as a function of quark or gluino mags) shows the quark conden- The spectrum of the Dirac operator ftls =2 quark fla-
sate forN¢=1, ... ,4 Orac fermions in the fundamental represen- ,,.c andN 4=1 Majorana flavor is shown in Figs(& and

; B a
tationsSU(2). (b) shows the gluino condensate Mgd=1.2 Ma- gy The spectra were determined in simulations with)
jorana fermions in the adjoint representation. =0.1A"1. Again, we observe that in both cases therg is a
. . . ! . __finite density of eigenvalues as—0. ForN¢=2 the spectral
will concentrate on simulations at a fixed instanton dens'tydensity nean =0 is flat’ whereas in the cas,g=1 it is

— 4 ’ a

(N/V)=1.0A% - growing towards small . Again, this is similar to the case of

To set the stage, we show results for=1, . .. ,4flavors oy gne fundamental fermion. The results are consistent

of fundamental fermions. Figure 4 shows the quark condengii, the effective field theory predictiof87,39
sate as a function of the quark mass from simulations in a ’

Euclidean box of siz&=2.0°A%. The case of only one fla- $2 0 (N—2)(Ng+ B)
vor is special. The chiral condensate persists even if the limit p'(A=0)= ‘2’ Z f ! (51
m,—0 is taken in a finite volume. This is due to the fact that 167t BN;

for Ny=1 the quark condensate is dominated by direct in- ) ] .

stanton contributions. The result fot;=2 is characteristic Here, 8 is the Dyson index of the random matrix ensemble
of spontaneous symmetry breaking. The quark condensatith the appropriate symmetry. We haye=1 for funda-
vanishes as the quark mass goes to zero but shows a clear

plateau for larger quark masses. One can verify that the onset

of chiral symmetry breaking moves towards smaller masses’rigure 5 shows that the spectral density is flat for intermediate
as the volume is increased. For more than two flavors th@ajues of\. There is a finite volume suppression of the spectral
chiral condensate is significantly reduced. In the case of thregensity for small\ and aO(m?) peak at\=0. To show that the
flavors the signal is already quite weak. Using simulations irspectral density is flat at=0 in the limit V—%,m—0 requires
bigger volumes one can verify that chiral symmetry is indeedmore numerical work.
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fundamental fermions employ the semi-classical approximation and focus on the
Dirac operator in the subspace spanned by the zero modes of

2000.0 ; . the individual instantons and anti-instantons. We have shown
how the quaternionic structure of the Dirac operator in theo-
ries with adjoint fermions emerges naturally from the spin
and color structure of the zero modes. The dependence of the
matrix elements on the collective coordinates of the instan-
tons is quite complicated but qualitatively similar to the sim-
pler case of fundamental fermions.

We have provided evidence that gluino condensation does
take place in an ensemble of instanton and anti-instantons. In
a random ensemble, the gluino condensate is proportional to
the square root of the instanton density. In supersymmetric
gluodynamics we find that gluino condensation persists even
if interactions between the instantons are taken into account.
We observed that finite volume effects are much weaker than

20,5 05 10 15 in QCD with two flavors of fundamental fermions. This is

AIA] consistent with the fact that supersymmetric gluodynamics
. . has a large mass gap. In QCD with more than one adjoint
adjoint fermions flavor we found no compelling evidence for gluino conden-
sation.
8000.0 ' ’ There are many problems that remain to be studied. In
particular, it would be interesting to make a systematic study
of gluino and gluino-glueball correlation functions. There are
two types of correlation functions: constant correlators that
provide information on condensates, axdependent corr-
elators related to the spectrum. These correlation functions
will also show to what extent supersymmetry is realized in
the limit mg— 0. In addition to that, it would be interesting
to search for evidence a&f, domains and to investigate the
dependence of the results on the topological sector of the
theory. In this work we have used the zero mode wave func-
tions that correspond to trivial holonomy and anti-periodic
boundary conditions on the fermions. This suggests the ques-
00 ) ‘ tion of how the results are changed if the boundary condi-
0.0 05 10 15 tions are modified. In this case, the zero modes discussed in
Al [39] will come into play. Finally, it is important to study the

FIG. 5. Spectrum of the fundamental and adjoint Dirac operat0|rOIe of very large instantons that were excluded in the

in an unquenched instanton ensemble. In the case of the fundameRresent study. . . . .
tal spectrum the ensemble was created With-2 fundamental There have been suggestions that objects with fractional

Dirac fermions, while in the case of the adjoint spectrum the enfOpological charge may play a role in theories with adjoint
semble corresponds 19,,=1 adjoint Majorana fermions. fermions[40—42,15. These objects can give a direct contri-

bution to the gluino condensate. Because of tunneling be-

mental fermions ifSU(2), p=2 for fundamental fermions tween the differenzy, phases the presence of such objects
in SUN>2), andB=4 in the case of fermions in the ad- cannot be inferred from the behavior of the gluino conden-
joint representationiN; denotes the number of Dirac or Ma- gate as a function of the quark mass in a finite volume. One
jorana flavors in the casgs=1,2 andB =4, respectively>,  ghould be able, however, to detect the presence of fraction-
is the magnitude of the quark condensate &pdhe pion 4y charged objects in lattice simulations by looking for zero
decay constant. The expressi@1) summarizes the fact that ,5qes of the Dirac operator that do not appear in multiples
the spectrum is peaked towards small virtuality for b ¢ 5N 143]. In this context it would also be interesting to
=1 andNgy=1 while it is flat for Ny=2. Effective field  qy,qy gluino condensation fai,>2. For adjoint fermions
theory predlcts the' slope of the 'Dlrac spectrum under thepe nymper of zero modes per topological charge increases
assumption that chiral symmetry is broken. The theory cang;ith N, One might therefore doubt that instantons alone are
not preqllct whether chiral symmetry breaking takes place fog icient to trigger gluino condensation in large SUSY
some giverNy or Nag. gluodynamics. It has also been suggested that fractionally
charged objects can be thought of as instanton constituents
[44,41,49. One might then envision a situation whereNif

In summary we have studied gluino condensation and thés small, or instantons are small, fractionally charged objects
spectrum of the Dirac operator in an instanton ensemble. Ware bound into instantons while for largé., or for large

1500.0

N()

1000.0

500.0 +

6000.0

4000.0

N®)

2000.0

VIIl. CONCLUSIONS
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instantons, topological objects dissociate and the instanton
liquid should be replaced by liquid of fractional charges.
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b3(K)=—2mp?K,(kp).

The matrix elements of the Dirac operator between supercon-
formal zero modes are determined by

(B2)

T3%(K) = (+1)[ — 2k, +8u,(u-k)?k| p3(K)[%,  (B3)
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APPENDIX A: EUCLIDEAN SPINOR CONVENTIONS

We use the following Euclidean spinor conventions

[0 e (-1 0)
Yu= v, 0 =Yur YT o 4] (A1)
o,=(i0,)), o,=(—ia1), (A2)
1 . .
(0,)6= 7000 el 0) P = (0,) aal 0,) 71, (A3)
— 1 — - .
(0u0) 5= 7[(0L)(0,) ap=(0,)* () apl- (A4)

Indices are raised and lowered wi##? and e*# where

e*Peg,= 85 and e*P=€*F. The Euclidean sigma matrices

have the following properties:

(0,0,)8=6,,60+2(c,,)", (A5)
(0,0,)5=8,,05+2(0,,)5, (A6)
(0,)%=ePeP(0,) 55 (A7)
1
O'/vaie,uvp(ra'pav
(A8)
_ 1 _
Oup=" EGMVWO’W.

APPENDIX B: MATRIX ELEMENTS

In this appendix we collect the remaining matrix elements
of the Dirac operator. We define the profile function of the

superconformal zero mode

P X

= 2w (2t ) ®Y

and its Fourier transforng , (k) = —iRﬂ¢3(k) with

and the matrix elements between supersymmetric and super-
conformal zero modes lead to

T 9k)=[2—8(u-k)’Ikpa(K) p3(k),  (B4)

T5, °(k)=8(u,k,—u,k,)(u-k)kea(k) pa(K).
(B5)

From these results we can extract the invariant functions

1
Ti(2)=— ﬁj dk2k*j1(kz)| (k) |? (B6)
and T39z)=—4T3%2) as well asT3%(z)=0. Also
1
TSS59(2) = @f dk 2k4jo(k2)
3
_8?j1(kz) $2(K) p3(k), (B7)
SS—SC, 1 4

T3 (Z):@J dk8k™j 2(kz) ¢,(k) ¢3(k), (B8)

and T5° °Y2)=—T35% °Y2). Numerical results for these
functions are shown in Fig. 1. The results can be param-
etrized as

Srse(z)= -0.25% &9
Pl 1.0+ 0.4222+0.217
as well as
_ 017
TSS5¢(7) = — _— B10
T = 00521 0.0 (B10
_ 1.272 0.0142
P *(2)= =3 =53’
(1.0+0.4%2)°  (1.0+0.2122)
(B11)

wherez=2z/p. The overlap matrix elemenfss~5° are re-
lated to the corresponding functions with the supersymmetric
and superconformal zero modes interchanged. We find
Ti?Z—SS: _Ti’sz—sc and TgC—SS: TgS—SC.
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