
PHYSICAL REVIEW D, VOLUME 62, 035013
Gluino condensation in an interacting instanton ensemble
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We perform a semiclassical study of chiral symmetry breaking and of the spectrum of the Dirac operator in
QCD with adjoint fermions. For this purpose we calculate matrix elements of the adjoint Dirac operator
between instanton zero modes and study their symmetry properties. We present simulations of the instanton
ensemble for different numbers of Majorana fermions in the adjoint representation. These simulations provide
evidence that instantons lead to gluino condensation in supersymmetric gluodynamics.

PACS number~s!: 12.60.Jv, 11.15.Kc, 12.38.Lg
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I. INTRODUCTION

In order to improve our understanding of non-perturbat
phenomena in QCD it is useful to view QCD from a larg
perspective, as a member of a family of QCD-like theor
with different matter contents. In this context we would lik
to understand the phase structure of QCD-like theories w
Nf fermions in the fundamental representation of the ga
group andNad fermions in the adjoint representation. The
ries with adjoint fermions are special because the action m
display a symmetry that connects bosonic and fermionic
grees of freedom, supersymmetry. Supersymmetry impo
powerful restrictions on the structure of the low energy
fective action. These constraints have been used, for
ample, to determine the phase structure ofN51 supersym-
metric ~SUSY! QCD with Nc colors and Nf flavors of
fundamental quarks@1,2#.

In addition to that, supersymmetry provides the oppor
nity to isolate certain non-perturbative effects, in particu
instantons. This idea has been used in order to calculate
gluino condensate in the simplest supersymmetric ga
theory, SUSY gluodynamics. The strategy behind the
called weak coupling instanton calculation@3–7# is to add to
the theory a fundamental fermion together with its sca
superpartners and consider the regime where the expect
value of the scalar field is large. In this case there is a uni
non-perturbative superpotential induced by instantons. S
the scalar vacuum expectation value~vev! is large, instantons
are semi-classical and the superpotential can be calcu
reliably. The superpotential determines the gluino cond
sate in the theory with additional matter. Finally, the mat
fields can be decoupled by sending their mass to infinity. T
result for the gluino condensate inSU(2) supersymmetric
gluodynamics is

^ll&56L3, ~1!

whereL is the scale parameter defined in@8#

L5M PVS 16p2

bg2 D 1/3

expS 2
8p2

bg2 D . ~2!
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Here,b53Nc is the first coefficient of the beta function i
supersymmetric gluodynamics andM PV is a Pauli-Vilars
regulator.

There is an old puzzle concerning this result. The puz
is connected with the fact that there is an alternative met
for calculating the gluino condensate, usually referred to
the strong coupling instanton method@9–12#; for a review
see@13#. In the case ofNc52 one considers a four fermio
correlation function. This correlation function is a topolog
cal quantity. Not only can it be saturated with one instant
but supersymmetry implies that the correlator is just a c
stant. At short distance, one expects that this constant is s
rated by small instantons and can be calculated reliably.
gluino condensate is then extracted by using clustering.
puzzle is that the result differs from the WCI calculation
a factor 4/5.

Several suggestions have been put forward in orde
resolve the puzzle@14–17#. We do not wish to discuss thes
possibilities in detail. Instead, we would like to employ
somewhat different, more qualitative approach. Even tho
there is no direct instanton contribution to the gluino cond
sate, one would still expect configurations with instanto
and anti-instantons to contribute to the gluino condens
Here we have in mind that the theory is studied in a fin
volume and in the presence of a non-zero mass term.
thermodynamic limit is approached by taking the volume
infinity before we let the mass go to zero. The mechani
for gluino condensation is similar to the instanton liquid p
ture of quark condensation in ordinary QCD@18–20#. For
Nf.1 there is no direct instanton contribution to the qua
condensate but chiral symmetry breaking may take plac
an ensemble of instantons and anti-instantons in the ther
dynamic limit. The Banks-Casher relation^q̄q&52pr(0)
@21# connects the quark condensate with the density of
genvalues of the Dirac operator at zero virtuality. For si
plicity let us consider an ensemble with an equal numbe
instantons and anti-instantons. In this case the Dirac oper
no longer has any exact zero modes. However, if the in
action between the instantons is sufficiently weak, the
proximate zero modes associated with individual instant
and anti-instantons form a zone around zero virtuality a
lead to spontaneous chiral symmetry breaking. This qu
condensation mechanism has been investigated in some
©2000 The American Physical Society13-1
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THOMAS SCHÄFER PHYSICAL REVIEW D 62 035013
tail, both analytically and on the lattice@22,23#, and the re-
sults seem to support the instanton picture.

In the present work we wish to extend these studies
theories with fermions in the adjoint representation. Since
are dealing with a strongly coupled theory, our calculatio
are necessarily approximate. In particular, we will have
restrict ourselves to the contribution of small instantons
which the semi-classical description is appropriate. On
other hand, the methods we are using are applicable als
non-supersymmetric theories with several flavors of adjo
fermions. In addition to that, we can use these method
study non-constant correlation functions that determine
spectrum of the theory.

The paper is organized as follows. In Sec. II we disc
some general aspects of chiral symmetry breaking in theo
with fermions in the adjoint representation. In Sec. III w
describe the structure of the instanton zero mode wave fu
tions and in IV we calculate matrix elements of the Dir
operator between zero mode states. These results are us
order to determine the fermion determinant in the field of
instanton–anti-instanton pair~Sec. V! and to calculate the
gluino condensate in a random instanton ensemble~Sec. VI!.
In Sec. VII we describe simulations of an interacting insta
ton ensemble with different numbers of fermions in the fu
damental and adjoint representation.

II. QCD WITH ADJOINT FERMIONS

QCD with adjoint fermions is defined by the Lagrangia

L5(
i 51

Nad 1

2
l̄M

( i )a~ iD” !ablM
( i )b2

1

4g2
Gmn

a Gmn
a , ~3!

wherelM
a is a Majorana fermion in the adjoint representati

of the gauge group andGmn
a is the usual field strength tenso

The covariant derivative in the adjoint representation
given by

Dm
ab5]mdab1 f abcAm

c . ~4!

For several Majorana flavors the theory~3! possesses a
SU(Nad) chiral symmetry. A non-zero gluino condensate

^l̄M
( i )lM

( j )&52d i j s ~5!

breaks this symmetry toSO(Nad) @24#. This fact can be seen
most easily by considering the conserved vector and ax
vector currents@25#. There are 1

2 Nad(Nad21) conserved
vector currentsVm

i j 5l̄M
( i )gmlM

( j ) and 1
2 Nad(Nad11) classi-

cally conserved axial-vector currentsAm
i j 5l̄M

( i )gmg5lM
( j ) . The

singlet axial currentAm
i i is anomalous. At the quantum leve

this leavesNad
2 21 conserved charges that generate

SU(Nad) chiral symmetry. Gluino condensation breaks t
axial symmetries and leads to the appearance of1

2 (Nad
2

1Nad22) Goldstone bosons. The unbroken1
2 Nad(Nad21)

vector charges generate the residualO(Nad) symmetry.
In the case of supersymmetric gluodynamics,Nad51,

there is no continuous symmetry. Instantons break the a
U(1)A symmetry but leave a discreteZNc

symmetry intact.
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This discrete symmetry is spontaneously broken by glu
condensation. As discussed above, the value of the glu
condensate is known from a weak coupling instanton ca
lation. There are no predictions for the spectrum of t
theory, but we expect the lowest states to fill out a chi
supermultiplet containing a scalar and a pseudoscalar m
as well as a Majorana fermion. These results can be sum
rized in terms of an effective Lagrangian@26#. This is not an
effective Lagrangian in the Wilsonian sense. The effect
action does not generate the low momentum scattering
plitudes of the theory. Instead, it mainly serves as a gene
ing functional for the anomalous Ward identities of th
theory.

III. INSTANTON GAUGE POTENTIAL AND FERMIONIC
ZERO MODES

In theories with adjoint fermions it is convenient to em
ploy a spinor notation for spin, vector, and color indices@8#.
We can convert vectors to spinors using

Vaȧ5Vm~sm!aȧ . ~6!

The Euclidean spinor conventions used in this paper
summarized in Appendix A. The instanton gauge poten
couples spin to color degrees of freedom. A fieldAa in the
adjoint representation ofSU(2) can be represented by
symmetric tensorAab

Aa5Aabeag~ta!b
g . ~7!

In spinor notation, the instanton gauge potential in regu
gauge is given by

Agḋ
ab

522i ~dg
axḋ

b
1dg

bxḋ
a
!

1

x21r2
. ~8!

We can transform the gauge potential to singular gauge u
the gauge transformation

U ȧa5 x̂m~s̄m!ȧa. ~9!

Note that this matrix transforms an undotted color index in
a dotted one. We can perform a ‘‘fake’’ conversion of th
dotted spinor back to an undotted one using the fact
(s0)aȧ is just the unit matrix.

In the case ofSU(2), the Dirac operator in the back
ground field of an instanton has four zero modes. The fi
two are conventionally called the supersymmetric~ss! zero
modes@13#

la(b)
gd 5~da

gdb
d 1db

gda
d !

r2

p

1

~x21r2!2
, ~10!

whereb51,2 enumerates the zero modes. The other two
referred to as the superconformal~sc! zero modes

la(ḃ)
gd

5~da
gxḃ

d
1da

d xḃ
g
!

r

A2p

1

~x21r2!2
. ~11!
3-2
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In singular gauge, the zero modes are given by

la(b)
ġ ḋ 5~xa

ġxb
ḋ 1xb

ġxa
ḋ !

r2

p

1

x2~x21r2!2
~ss!, ~12!

la(ḃ)
ġ ḋ

5~xa
ġdḃ

ḋ
1xa

ḋ dḃ
ġ
!

r

A2p

1

~x21r2!2
~sc!. ~13!

Analogously, we can construct the zero modes of the D
operator in the background field of an anti-instanton. T
regular gauge supersymmetric zero mode has the struc

lġḋ
ȧ(ḃ)

;(dġ
ȧdḋ

ḃ
1dḋ

ȧdġ
ḃ), etc.

The effect of the zero modes on the propagation of fer
ons can be summarized in terms of an effective Lagrang
@27#. The ’t Hooft effective interaction in the case of on
Majorana fermion in the adjoint representation ofSU(2)
was determined in@28,29#. The result is

L5
4p4

3 S 2p

as
D 4

expS 2
2p

as
D r3dr

3H l̄M
a lM

a ]ml̄M
b ]mlM

b 1l̄M
a g5lM

a ]ml̄M
b g5]mlM

b

2
1

2
l̄M

a sablM
b ]ml̄M

b sab]mlM
a J . ~14!

This result has to be interpreted with some care. The no
of an effective interaction induced by instantons of so
fixed size is incompatible with supersymmetry. In order
derive manifestly supersymmetric results we always hav
integrate over the collective coordinates of the instant
Nevertheless, it is instructive to compare the result~14! with
the effective interaction in the case ofNf52 Dirac fermions
in the fundamental representation. The structure of the
interactions is quite similar, which suggests that instant
may lead to similar physical effects. The most important d
ference between the two effective Lagrangians is the p
ence of derivatives acting on two of the four Majora
spinors in ~14!. This difference is connected with th
asymptotic behavior of the supersymmetric zero mod
which is not;1/z3, but 1/z4.

IV. MATRIX ELEMENTS OF THE DIRAC OPERATOR

In the following, we wish to study the spectrum of th
Dirac operator in an instanton ensemble. For this purpo
we have to calculate matrix elements of the Dirac opera
between the zero modes of individual instantons and a
instantons

TIA5E d4xl̄ I
a~ iD” !ablA

b . ~15!

An ensemble of instantons and anti-instantons is only
approximate saddle point of the action. If the system is s
ficiently dilute then the instantons and anti-instantons
well separated and the approximate saddle point solution
the gauge potential is given by a simple sum of the ga
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potentials of the individual instantons. For this purpose,
gauge potential of the individual instantons has to be pu
singular gauge. In the sum ansatz, we can use the equa
of motion of the fermion fields in order to replace the cov
riant derivative in Eq.~15! by an ordinary derivative

TIA52E d4xl̄ I
a~ i ]” !lA

a . ~16!

The structure of the Dirac operator is dictated by the form
the zero modes. In the background field of an instanton–a
instanton pair we have

TIA5S 0
TIA

ss2ss TIA
ss2sc

TIA
sc2ss TIA

sc2sc

TAI
ss2ss TAI

ss2sc

TAI
sc2ss TAI

sc2sc
0

D , ~17!

where the matrix elementsTAI
ss , . . . are real quaternions

These quaternions can be decomposed as

~TAI
ss2ss!ḃb85Tm

ss~sm!b8ḃ ~18!

~TAI
sc2sc!bḃ85Tm

sc~sm!bḃ8 ~19!

~TAI
ss2sc!ḃḃ85Tss2sceḃḃ8

1Tmn
ss2sceḃġ~ s̄mn!ḃ8

ġ , ~20!

~TAI
sc2ss!bb85Tsc2ssebb8

1Tmn
sc2ss~smn!b

gegb8 . ~21!

Here,Tm
ss andTm

sc are real vectors,Tss2sc andTsc2ss are real
scalars, andTmn

ss2sc and Tmn
sc2ss are self-dual and anti-self

dual tensors, respectively. Chiral symmetry implies that
diagonal blocks ofTIA are zero. The upper right and lowe
left blocks are related by Hermitian conjugation. For e
ample, we find that

~TIA
ss2ss!bḃ85Tm

ss~ s̄m!ḃ8b. ~22!

In general, we have (T†)AI5(T) IA . The eigenvalues of~17!
come in quartets (j,j,2j,2j). These results are in agree
ment with the general arguments presented in@25,30#.

The functionsTm
ss, . . . depend on the collective coord

nates of the instanton and anti-instanton. We will charac
ize the relative color orientation by the four vectorum

51/2•tr(UA
†UIsm). Here, UI ,A are SU(Nc) matrices that

characterize the color orientation of the instanton and a
instanton. For colorSU(2) um is a real vector withu251.
Using rotational symmetry and the fact thatTAI is quadratic
in um we have

Tm
ss5 ẑmT1

ss1um~u• ẑ!T2
ss1 ẑm~u• ẑ!2T3

ss, ~23!

Tm
sc5 ẑmT1

sc1um~u• ẑ!T2
sc1 ẑm~u• ẑ!2T3

sc, ~24!
3-3
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THOMAS SCHÄFER PHYSICAL REVIEW D 62 035013
Tss2sc5T1
ss2sc1T2

ss2sc~u• ẑ!2, ~25!

Tmn
ss2sc5~umẑn2unẑm!~u• ẑ!T3

ss2sc, ~26!

where zm5zm
A2zm

I and the functionsT1
ss, . . . depend on

(uzmu,r I ,rA). For simplicity, we will assume that the depe
dence onr I ,A only enters through their geometric meanr̄
5Ar IrA. The fact that this assumption is valid to fairly goo
accuracy was checked in the case of fundamental fermi
In a more sophisticated treatment of the instanton–a
instanton gauge configuration the dependence of the ove
matrix element on (z,r I ,rA) is restricted by conformal in-
variance@31#.

In the following we shall outline the calculation of th
invariant functionsT1

ss, . . . . We describe the caseT1
ss in

some detail but relegate the results for the other function
appendix B. Using the expression~12! for the wave function
of the supersymmetric zero modes in singular gauge we

Th
ss5$tr~ s̄msrs̄bsa!tr~ s̄nsss̄gsh!

1tr~ s̄msrs̄bshs̄nsss̄gsa!%•urus

3E d4xfmn~x2z!]afbg~x!, ~27!

wherefmn(x) is the profile function of the supersymmetr
zero mode

fmn~x!5
r2

p

x̂mx̂n

~x21r2!2
. ~28!

The integral in Eq.~27! is most easily calculated in Fourie
space. The Fourier transform offmn is given by

fmn~k!5dmnf1~k!1 k̂mk̂nf2~k! ~29!

with

f1~k!5
2pr2

y H 4

y3
2S 4

y2
11D K1~y!2

2

y
K0~y!J , ~30!

f2~k!522pr2H 16

y4
2S 16

y3
1

4

yD K1~y!2S 8

y2
11D K0~y!J ,

~31!

andy5kr. Kn(y) is the modified Bessel function of the firs
kind and ordern. We can now calculate the overlap integr
and perform the traces. In momentum space the resu
given by

Th
ss~k!5~2 i !@22k̂h28uh~u• k̂!116~u• k̂!2#uf2~k!u2.

~32!

Finally, we can determine the functionsT1,2,3
ss by performing

the inverse Fourier transform. In thed4k integral all integra-
tions except for the one over the absolute magnitude ofk can
be performed analytically. We find
03501
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ss~z!5

1

8p2E dkH 2k4 j 1~kz!216
k3

z
j 2~kz!J uf2~k!u2,

~33!

T2
ss~z!5

1

8p2E dkH 8k4 j 1~kz!232
k3

z
j 2~kz!J uf2~k!u2,

~34!

T3
ss~z!5

1

8p2E dk16k4 j 3~kz!uf2~k!u2, ~35!

where j n(x) is the spherical Bessel function of ordern. The
integrals~33! have to be performed numerically. The resu
are shown in Fig. 1. In the following, we will use a simp
parametrization of the numerical results. In the case of
supersymmetric overlaps, we use

r̄T1
ss~z!5

21.26z̄

1.012.34z̄210.35z̄410.24z̄6
, ~36!

r̄T2
ss~z!5

1.05z̄

~1.010.38z̄2!3
1

26.36z̄3

~1.010.68z̄2!4
,

~37!

r̄T3
ss~z!5

15.8z̄3

~1.010.84z̄2!4
, ~38!

wherez̄5z/ r̄. These parametrizations respect the asympt
behavior of the overlap integrals. In particular, we ha
Tss(z);1/z5, Tsc(z);1/z3 andTss2sc(z);1/z4.

For completeness, let us compare these results to the
responding expressions in the case of fundamental fermi
In this case, there is only one zero mode per instanton.
overlap matrix elementTIA is a real number in the case o
SU(2), andcomplex forSU(Nc.2). TIA satisfies the sym-
metry relationTIA5TAI* . As a consequence, the eigenvalu
are real and occur in pairs (j,2j). We can extract the de
pendence ofTIA on the collective coordinates. The result

TAI
f und5~u• ẑ!Tf~z,r I ,rA!,

Tf~z,r I ,rA!.
1

r IrA

4z

@2.01z2/~r IrA!#2
. ~39!

We note that the fundamental overlap matrix element o
depends on oneSU(2) angle cosu[(u•ẑ). From the
asymptotic form of the zero mode solution one findsTf(z)
;1/z3.

V. THE FERMION DETERMINANT IN THE FIELD OF AN
INSTANTON –ANTI-INSTANTON PAIR

Before we study gluino condensation we would like
make a brief digression and discuss the gluino indu
instanton–anti-instanton interaction. This interaction w
play an important role in the calculation of the gluino co
3-4
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GLUINO CONDENSATION IN AN INTERACTING . . . PHYSICAL REVIEW D62 035013
densate in an interacting instanton ensemble.
The probability to find an instanton–anti-instanton p

characterized by the collective coordinates (zI ,A ,r I ,A ,UI ,A)
is controlled by the weight factor exp(2S)det(D” 1m). The
first factor is the well known gluonic interaction. If the in

FIG. 1. Invariant functions characterizing the overlap mat
elements of the Dirac operator.~a!, ~b!, and~c! show the diagonal
overlap matrix elements between supersymmetric and superco
mal zero modes, and the mixed supersymmetric-superconfo
matrix elements.
03501
r

stanton and anti-instanton are well separated it has the di
form @32#

S52S02S0

4r I
2rA

2

z4
~124 cos2u!, ~40!

whereS05(8p2)/g2 is the single instanton action and cosu
is theSU(2) angle introduced above. We note that the int
action is attractive if the color orientation is aligned with th
spatial orientation, cosu561. The second factor is the fer
mion determinant. In the case of fundamental fermions, i
also well known. We have

det~D” !5cos2u
16

r I
2rA

2

z2

@2.01z2/~r IrA!#4
, ~41!

which is also attractive for cosu561. We also note that the
interaction peaks atz2.r IrA .

Using the results of the last section we can calculate
fermion induced interaction with fermions in the adjoint re
resentation. In order to calculate the determinant for one M
jorana fermion we take the square root of the correspond
expression for a Dirac fermion in the adjoint representati
For simplicity, let us begin with the determinant in the ba
of the supersymmetric zero modes only. We find

det~D” !ss5u~T1
ss!21@~T2

ss!212T1
ssT2

ss12T1
ssT3

ss#cos2u

1@~T3
ss!212T2

ssT3
ss#cos4uu. ~42!

The result for the superconformal zero modes is even m
simple,

det~D” !sc5u~T1
sc!21@~T2

sc!212T1
scT2

sc#cos2uu. ~43!

This expression is quite similar to the determinant for fund
mental fermions. The supersymmetric determinant~42!
is somewhat more complicated, but also peaked for cosu5
61. When the mixing between supersymmetric and sup
conformal zero modes is included the fermion determin
depends on otherSU(2) angles in addition to cosu. We
show numerical results for log„det(D” )… as a function ofz,
cosu, and cosf in Fig. 2. Here we have takenẑm5zdm4 and
defined cosu5u4 and sinu cosf5u2. We observe that again
the determinant peaks forz2.r IrA . For largez, the deter-
minant behaves as;1/z16. More importantly, we find that
the interaction is again most attractive for cosu561. There
is some dependence on cosf, but it is not as pronounced a
the dependence on cosu. This means that the gluino induce
interaction for one Majorana fermion is qualitatively simil
to the quark induced interaction with an effective number
quark flavors betweenNf52 ~which gives det;1/z12) and
Nf53 ~corresponding to det;1/z18).

VI. GLUINO CONDENSATION IN A RANDOM
INSTANTON ENSEMBLE

In this section we study gluino condensation in a rand
instanton ensemble. This means that we will assume tha

or-
al
3-5
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THOMAS SCHÄFER PHYSICAL REVIEW D 62 035013
collective coordinates of the instantons and anti-instanton
distributed randomly. In particular, we shall neglect the
fect of the fermion determinant on the distribution of insta
tons. This is not a good approximation even in ordinary QC

FIG. 2. Logarithm of the adjoint fermion determinant in the fie
of an instanton–anti-instanton pair.~a! shows logdet(D” ) as a func-
tion of z ~in units of r) for cosu51, ~b! gives the dependence o
cosu for z51, and~c! the behavior of the determinant as a functi
of cosf for cosu51/2 andz51.
03501
re
-
-

and it certainly cannot be correct in a supersymmetric theo
Nevertheless, using the approximation of randomness we
get some analytic understanding of the dependence of
gluino condensate on the parameters characterizing the
stanton liquid. We can also get an estimate of the rela
size of the quark and gluino condensates in theories w
both fundamental and adjoint fermions.

The simplest model of the spectrum of the Dirac opera
is based on the assumption that the non-zero matrix elem
of the Dirac operator are Gaussian random numbers@19#.
The distribution is characterized by the first moment

s25 K 2

N
tr~T†T!L . ~44!

The eigenvalue distribution for the Gaussian ensemble
given by a semi-circle where the density of eigenvalues
zero virtuality isr(0)5(N/V)(ps)21. Here, (N/V) is the
number of eigenstates per unit volume. The first momen
the overlap matrix can be estimated by averaginguTAIu2 over
the collective coordinates of the instantons. Using~39! we
find the first moment of the Dirac operator for fermions
the fundamental representation ofSU(2) @19#

s5S 1

3

N

VD 1/2

r̄p, ~45!

wherer̄ is the average size of the instanton. This parame
just like the density of instantons, cannot be determined
the semi-classical approximation. In the instanton liqu
model of the QCD vacuum it is assumed thatr̄51/3 fm and
(N/V)51 fm4 @18#. Using these values we find

^q̄q&52
1

pr̄
31/2S N

VD 1/2

.2~230 MeV!3, ~46!

in very good agreement with the phenomenological va
@which, of course, applies to colorSU(3)#.

The same arguments can be applied to gluino conde
tion in a random instanton ensemble. In this case we nee
determine the first moment of a quaternionic matrix with t
matrix elements determined in Sec. IV. We find

sad5S N

VD 1/2

0.43r̄p, ~47!

which is somewhat smaller than Eq.~45!. There are four
times as many eigenstates per unit volume but for a Ma
rana fermion the Banks-Casher relation has an additional
tor 1/2,^l̄l&52p/2•r(0). Wefinally get the following es-
timate of the gluino condensate:

^l̄l&52
1

pr̄
4.6S N

VD 1/2

. ~48!

Here and in what follows we have dropped the subscripM
on the Majorana spinors. This result is a little more th
twice as large as the corresponding result for a Dirac ferm
3-6
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in the fundamental representation. As we saw, this is ma
due to the effective number of zero modes in both cases.
emphasize that the gluino condensate is proportional to
square root of the instanton density, which is also what
would expect if the condensate is extracted from the fo
point function using clustering.

We have checked these estimates by performing a
merical calculation of the spectrum of the Dirac operator i
random instanton ensemble. This means that instead o
suming the matrix elements of the Dirac operator to be r
dom we take the collective coordinates of the instantons
anti-instantons to be random. We calculate the spectrum
the Dirac operator and determine the gluino condensate
ing

^l̄l&52
1

2E dlr~l!
2m

l21m2
. ~49!

The results are shown in Fig. 3. We observe that the sp
trum is not a semi-circle but is peaked towards zero virtua
@33#. This non-analyticity is smoothed out when we calcula
the condensate for a non-zero quark or gluino mass. Ag
using (N/V)51 fm4 and r̄51/3 fm as well asmq5mg

520 MeV we find ^c̄c&52(260 MeV)3 and ^l̄l&
52(347 MeV)3.

VII. GLUINO CONDENSATION IN AN UNQUENCHED
INSTANTON ENSEMBLE

As we stressed in the previous section, the assumptio
randomness is not expected to be very useful. The ferm
determinant is given by the product of all eigenvalues of
Dirac operator, while the quark or gluino condensate is
termined by the density of small eigenvalues. This impl
that the determinant tends to suppress fermion condens
In particular, we expect that the strength of chiral symme
breaking is reduced as the number of fermion flavors is
creased.

In this section we shall study this problem using simu
tions of the instanton ensemble in QCD with fundamen
and adjoint fermions. We consider the partition function

Z5E S )
i

N

dV id~r i !D det~D” f1mq!Nf

3det~D” a1mg!Nad/2exp~2S!. ~50!

Here,V denotes the collective coordinates of the instant
d(r) is the single instanton distribution@27,29,34#, D” f ,a are
the Dirac operators in the fundamental and adjoint repres
tation, and exp(2S) is the gluonic interaction between in
stantons. In order to study spontaneous symmetry brea
in a finite volume we introduce non-zero quark and glui
massesmq,g . We will study the limitmq,g→0 in some de-
tail.

The partition function~50! suffers from the usual IR prob
lem connected with large instantons for which the se
classical approximation does not apply. In practice, we d
with this problem by introducing a short range repulsive c
03501
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in the gluonic instanton interaction; see Sec. V C in@22# for
a more detailed discussion. The repulsive core eliminates
contributions of large instantons and very close pairs. T
particular method for suppressing objects that are not se
classical has the virtue that it respects the classical s
invariance of Yang-Mills theory.

The instanton ensemble is characterized by two numb
the scale parameterL that enters into the instanton weigh
d(r) and a dimensionless parameterA which determines the
size of the core. Lacking a better theory of topological flu
tuations beyond the semi-classical domain we have to fiA
phenomenologically. This could be done, for example,
soon as lattice information on the spectrum and other pr
erties of theories with adjoint fermions becomes availa
@35,36#. In this work we will use the same value that wa
employed in studies of QCD with fundamental fermions.
leads to a dilute instanton ensemble characterized by the
mensionless parameterr̄4(N/V).0.12. For simplicity we

FIG. 3. Spectrum of the fundamental and adjoint Dirac opera
in a random instanton ensemble. The spectral density is give
arbitrary units.
3-7
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will concentrate on simulations at a fixed instanton dens
(N/V)51.0L4.

To set the stage, we show results forNf51, . . . ,4flavors
of fundamental fermions. Figure 4 shows the quark cond
sate as a function of the quark mass from simulations i
Euclidean box of sizeV52.04L4. The case of only one fla
vor is special. The chiral condensate persists even if the l
mq→0 is taken in a finite volume. This is due to the fact th
for Nf51 the quark condensate is dominated by direct
stanton contributions. The result forNf52 is characteristic
of spontaneous symmetry breaking. The quark conden
vanishes as the quark mass goes to zero but shows a
plateau for larger quark masses. One can verify that the o
of chiral symmetry breaking moves towards smaller mas
as the volume is increased. For more than two flavors
chiral condensate is significantly reduced. In the case of th
flavors the signal is already quite weak. Using simulations
bigger volumes one can verify that chiral symmetry is inde

FIG. 4. Quark condensate in an interacting instanton ensem
as a function of quark or gluino mass.~a! shows the quark conden
sate forNf51, . . . ,4 Dirac fermions in the fundamental represe
tationsSU(2). ~b! shows the gluino condensate forNad51,2 Ma-
jorana fermions in the adjoint representation.
03501
y

n-
a

it
t
-

te
ear
et
s
e

ee
n
d

broken. There is no clear evidence for chiral symme
breaking in simulations with four or more flavors.

Figure 4~b! shows the gluino condensate measured
simulations with one or two flavors of Majorana fermions
the adjoint representation. ForNad51 there is clear evidence
for spontaneous symmetry breaking. Indeed, the behavio
more reminiscent of the caseNf51, where^q̄q& receives
direct instanton contributions, than the caseNf52, in which
chiral symmetry breaking is a collective effect.

These observations can be understood in more phys
terms. Supersymmetric gluodynamics has no Goldst
bosons, so finite volume effects are much weaker than
Nf52 non-supersymmetric QCD. This means that in a fix
volume, gluino condensation can be observed for glu
masses that are significantly smaller than the quark ma
required to produce quark condensation. In the standard
ture, there is a discrete chiral symmetry which is broken
gluino condensation. This means that if the gluino mass
too small then chiral symmetry will be restored because
tunneling between theZ2 vacua. This is different fromNf
51 non-supersymmetric QCD where instantons leave no
broken discrete symmetries.

The value of the gluino condensate is^l̄l&.2L3. This
result has the correct order of magnitude but it cannot ye
compared directly to the prediction~1!. First of all, we use a
different definition of the scale parameter. In order to mak
connection with our work on QCD we use a Pauli-Vila
scale parameter. Second, we have an additional parameA
which controls the boundary of the semi-classical regim
Finally, we have performed the simulations at a fixed dens
of instantons (N/V)51.0L4. It is this choice which effec-
tively sets the scale in our calculation.

In Fig. 4~b! we also show the gluino condensate measu
in simulations withNad52 Majorana flavors. The conden
sate is very small and there is no clear evidence for spo
neous chiral symmetry breaking.

The spectrum of the Dirac operator forNf52 quark fla-
vors andNad51 Majorana flavor is shown in Figs. 5~a! and
5~b!. The spectra were determined in simulations withmq,g
50.1L21. Again, we observe that in both cases there is
finite density of eigenvalues asl→0. ForNf52 the spectral
density nearl50 is flat,1 whereas in the caseNad51 it is
growing towards smalll. Again, this is similar to the case o
only one fundamental fermion. The results are consist
with the effective field theory prediction@37,38#

r8~l50!5
S0

2

16p2f p
4

~Nf22!~Nf1b!

bNf
. ~51!

Here,b is the Dyson index of the random matrix ensemb
with the appropriate symmetry. We haveb51 for funda-

1Figure 5 shows that the spectral density is flat for intermed
values ofl. There is a finite volume suppression of the spect
density for smalll and aO(m2) peak atl50. To show that the
spectral density is flat atl50 in the limit V→`,m→0 requires
more numerical work.

le
3-8
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GLUINO CONDENSATION IN AN INTERACTING . . . PHYSICAL REVIEW D62 035013
mental fermions inSU(2), b52 for fundamental fermions
in SU(N.2), andb54 in the case of fermions in the ad
joint representation.Nf denotes the number of Dirac or Ma
jorana flavors in the casesb51,2 andb54, respectively.S0
is the magnitude of the quark condensate andf p the pion
decay constant. The expression~51! summarizes the fact tha
the spectrum is peaked towards small virtuality for bothNf
51 and Nad51 while it is flat for Nf52. Effective field
theory predicts the slope of the Dirac spectrum under
assumption that chiral symmetry is broken. The theory c
not predict whether chiral symmetry breaking takes place
some givenNf or Nad .

VIII. CONCLUSIONS

In summary we have studied gluino condensation and
spectrum of the Dirac operator in an instanton ensemble.

FIG. 5. Spectrum of the fundamental and adjoint Dirac opera
in an unquenched instanton ensemble. In the case of the funda
tal spectrum the ensemble was created withNf52 fundamental
Dirac fermions, while in the case of the adjoint spectrum the
semble corresponds toNad51 adjoint Majorana fermions.
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employ the semi-classical approximation and focus on
Dirac operator in the subspace spanned by the zero mod
the individual instantons and anti-instantons. We have sho
how the quaternionic structure of the Dirac operator in th
ries with adjoint fermions emerges naturally from the sp
and color structure of the zero modes. The dependence o
matrix elements on the collective coordinates of the inst
tons is quite complicated but qualitatively similar to the sim
pler case of fundamental fermions.

We have provided evidence that gluino condensation d
take place in an ensemble of instanton and anti-instanton
a random ensemble, the gluino condensate is proportion
the square root of the instanton density. In supersymme
gluodynamics we find that gluino condensation persists e
if interactions between the instantons are taken into acco
We observed that finite volume effects are much weaker t
in QCD with two flavors of fundamental fermions. This
consistent with the fact that supersymmetric gluodynam
has a large mass gap. In QCD with more than one adj
flavor we found no compelling evidence for gluino conde
sation.

There are many problems that remain to be studied
particular, it would be interesting to make a systematic stu
of gluino and gluino-glueball correlation functions. There a
two types of correlation functions: constant correlators t
provide information on condensates, andx-dependent corr-
elators related to the spectrum. These correlation functi
will also show to what extent supersymmetry is realized
the limit mg→0. In addition to that, it would be interestin
to search for evidence ofZ2 domains and to investigate th
dependence of the results on the topological sector of
theory. In this work we have used the zero mode wave fu
tions that correspond to trivial holonomy and anti-period
boundary conditions on the fermions. This suggests the q
tion of how the results are changed if the boundary con
tions are modified. In this case, the zero modes discusse
@39# will come into play. Finally, it is important to study th
role of very large instantons that were excluded in t
present study.

There have been suggestions that objects with fractio
topological charge may play a role in theories with adjo
fermions@40–42,15#. These objects can give a direct cont
bution to the gluino condensate. Because of tunneling
tween the differentZN phases the presence of such obje
cannot be inferred from the behavior of the gluino conde
sate as a function of the quark mass in a finite volume. O
should be able, however, to detect the presence of fract
ally charged objects in lattice simulations by looking for ze
modes of the Dirac operator that do not appear in multip
of 2Nc @43#. In this context it would also be interesting t
study gluino condensation forNc.2. For adjoint fermions
the number of zero modes per topological charge increa
with Nc . One might therefore doubt that instantons alone
sufficient to trigger gluino condensation in largeNc SUSY
gluodynamics. It has also been suggested that fraction
charged objects can be thought of as instanton constitu
@44,41,45#. One might then envision a situation where ifNc
is small, or instantons are small, fractionally charged obje
are bound into instantons while for largeNc , or for large
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THOMAS SCHÄFER PHYSICAL REVIEW D 62 035013
instantons, topological objects dissociate and the instan
liquid should be replaced by liquid of fractional charges.
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APPENDIX A: EUCLIDEAN SPINOR CONVENTIONS

We use the following Euclidean spinor conventions

gm5S 0 sm

s̄m 0D 5gm
† , g55S 21 0

0 1D , ~A1!

sm5~ isW ,1!, s̄m5~2 isW ,1!, ~A2!

~smn!a
b5

1

4
@~sm!aȧ~ s̄n!ȧb2~sn!aȧ~ s̄m!ȧb#, ~A3!

~ s̄mn!ḃ
ȧ
5

1

4
@~ s̄m!ȧa~sn!aḃ2~ s̄n!ȧa~sm!aḃ#. ~A4!

Indices are raised and lowered witheab and eȧḃ where
eabebg5dg

a and eȧḃ5eab. The Euclidean sigma matrice
have the following properties:

~sms̄n!a
b5dmnda

b12~smn!a
b , ~A5!

~ s̄msn!ḃ
ȧ
5dmndȧ

ḃ
12~ s̄mn!ḃ

ȧ , ~A6!

~ s̄m!ȧa5eabeȧḃ~sm!bḃ ~A7!

smn5
1

2
emnrssrs ,

~A8!

s̄mn52
1

2
emnrss̄rs .

APPENDIX B: MATRIX ELEMENTS

In this appendix we collect the remaining matrix eleme
of the Dirac operator. We define the profile function of t
superconformal zero mode

fm5
r

A2p

xm

~x21r2!2
~B1!

and its Fourier transformfm(k)52 i k̂mf3(k) with
03501
on

.
d

s

f3~k!52A2pr2K1~kr!. ~B2!

The matrix elements of the Dirac operator between superc
formal zero modes are determined by

Th
sc~k!5~1 i !@22k̂h18uh~u• k̂!2#kuf3~k!u2, ~B3!

and the matrix elements between supersymmetric and su
conformal zero modes lead to

Tss2sc~k!5@228~u• k̂!2#kf2~k!f3~k!, ~B4!

Tmn
ss2sc~k!58~umk̂n2unk̂m!~u• k̂!kf2~k!f3~k!.

~B5!

From these results we can extract the invariant functions

T1
sc~z!52

1

8p2E dk2k4 j 1~kz!uf3~k!u2 ~B6!

and T2
sc(z)524T1

sc(z) as well asT3
sc(z)50. Also

T1
ss2sc~z!5

1

8p2E dkF2k4 j 0~kz!

28
k3

z
j 1~kz!Gf2~k!f3~k!, ~B7!

T2
ss2sc~z!5

1

8p2E dk8k4 j 2~kz!f2~k!f3~k!, ~B8!

and T3
ss2sc(z)52T2

ss2sc(z). Numerical results for these
functions are shown in Fig. 1. The results can be para
etrized as

r̄T1
sc~z!5

20.25z̄

1.010.42z̄210.21z̄4
~B9!

as well as

r̄T1
ss2sc~z!5

20.17

1.010.05z̄210.08z̄4
, ~B10!

r̄T2
ss2sc~z!5

1.2z̄2

~1.010.45z̄2!3
1

0.014z̄2

~1.010.21z̄2!3
,

~B11!

where z̄5z/ r̄. The overlap matrix elementsTss2sc are re-
lated to the corresponding functions with the supersymme
and superconformal zero modes interchanged. We
T1,2

sc2ss52T1,2
ss2sc andT3

sc2ss5T3
ss2sc .
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